-
数据分析,如何赐能业务?
所属栏目:[大数据] 日期:2022-05-21 热度:147
做工作规划的时候,有很多公司都提出要求,要数据赋能业务/赋能销售/赋能运营到底啥玩意是赋能,咋个赋能法???往往领导又丢回一句你要多想想啊让人着实无奈。今天我们系统解答一下。 前方剧透警报:因为大量用了电视剧《亮剑》的梗,所以忘记的同学们可以去[详细]
-
数据分析七大实力 梳理数据需求
所属栏目:[大数据] 日期:2022-05-21 热度:133
大家好,我是爱学习的小xiong熊妹。 今天分享数据分析师必备的工作能力需求梳理。需求梳理很不起眼,甚至很多小伙伴感受不到他的存在。但它结结实实影响到大家的下班时间和绩效。 一、什么是数据需求? 顾名思义,数据需求,就是业务部门对数据分析产出的需求[详细]
-
HDFS 为什么在大数据领域经久不衰?
所属栏目:[大数据] 日期:2022-05-21 热度:157
HDFS 为何在大数据领域经久不衰? 1.概述 1.1 简介 Hadoop实现的一个分布式文件系统(Hadoop Distributed File System),简称HDFS。 源自于Google的GFS论文,发表于2003年,HDFS是GFS的克隆版。 大数据中最宝贵、最难以代替的就是数据,一切都围绕数据。 HDFS[详细]
-
Java开发人员需要明白的地域分布数据库
所属栏目:[大数据] 日期:2022-05-21 热度:95
在过去的七年里,我一直在使用分布式系统、平台和数据库。早在2015年,许多架构师就开始使用分布式数据库扩展单个机器或服务器的边界。他们选择这样的数据库是因为它的水平可伸缩性,尽管它的性能依然只能与传统的单服务器数据库相媲美。 现在,随着云原生应[详细]
-
Flink 在 B 站的多元化探索与践行
所属栏目:[大数据] 日期:2022-05-21 热度:166
本文整理自哔哩哔哩基础架构部资深研发工程师张杨在 Flink Forward Asia 2021 平台建设专场的演讲。主要内容包括: 1.1 基础功能完善 在平台的基础功能方面,我们做了很多新的功能和优化。其中两个重点的是支持 Kafka 的动态 sink 和任务提交引擎的优化。 我[详细]
-
详解数据管理发展的五个阶层
所属栏目:[大数据] 日期:2022-05-20 热度:128
近年来现代化企业都在改革现有的数据管理体系,优化原有的基于策略定义的数据管理模型,逐渐开始使用基于数据使用行为的数据管理方式。以确保数据不仅可用,而且保持活性,从而始终让数据资产充分发挥本身价值。 从历史的视角看,数据管理是一个不断进化发展[详细]
-
数据在网络中是怎样传输的
所属栏目:[大数据] 日期:2022-05-20 热度:130
整个请求交互过程分为了几个部分,首先最上层就是应用程序,接着往下是 Socket 库。 再下面就是操作系统的内部了,这里面就包括了协议栈,协议栈上半部分为 TCP 和 UDP ,它们都是负责数据的收发。 只是一个需要 连接,一个不需要连接可以直接收发数据,这两者[详细]
-
区块链在 数据为王 的年代扮演了什么角色?
所属栏目:[大数据] 日期:2022-05-20 热度:160
在当今数据为王的时代,数据作为企业、组织、乃至国家的战略资产,其重要性不言而喻。今天老蔡想和大家一起探讨下以下几方面的问题:1. 数据管理的全生命周期;2. 传统数据治理的弊端;3. 当代信息技术间的相互关系;以及4. 最后抛出区块链技术在数据治理过[详细]
-
行业大数据有什么安全风险
所属栏目:[大数据] 日期:2022-05-20 热度:198
网际空间安全面临的威胁越来越多样化。移动网络、云和虚拟化、物 联网、工控系统等技术领域的快速发展,使得保护对象和攻击路径都变得 更加复杂。而攻击来源也从早期的个人黑客变为犯罪团伙、政治势力、网 络部队等更严密的组织。甚至大数据技术本身也被攻击[详细]
-
数据管理的现实和商业智能的将来
所属栏目:[大数据] 日期:2022-05-20 热度:63
无论企业在哪个行业工作,拥有多少员工,或者是否面向消费者、企业、私营部门或公共部门进行营销,都不再重要。无论来自哪里,数据和分析都是日常现实。大多数企业定期收到的数据量是天文数字。全球的IT部门都在努力实施工具和实践,对他们收到的信息进行优[详细]
-
数据剖析的几个误区
所属栏目:[大数据] 日期:2022-05-20 热度:133
在IT领域,炒作越大,误解越多,数据分析也不例外。分析是当今信息技术最热门的方面之一,可以带来巨大的商业收益,但错误的观念可能会阻碍分析能力顺利和及时的流转,从而使商业用户和最终客户受益。当企业创建或扩大他们的分析战略时,以下是他们可能要记[详细]
-
终于有人把元数据说明白了
所属栏目:[大数据] 日期:2022-05-20 热度:175
元数据管理工具是企业数据治理的重要抓手,它可以帮助企业解决数据查找难、理解难等问题,促进数据的集成和共享。 一、系统架构 从应用角度看,元数据管理平台可分为数据源层、元数据采集层、元数据管理层、元数据应用层四层架构,如图1所示。 1. 数据源层[详细]
-
谈谈大数据技术现状和分类
所属栏目:[大数据] 日期:2022-05-20 热度:111
随着社交媒体、物联网和多媒体应用等各种来源产生的海量数据的诞生,大数据已经成为一个重要的研究领域。大数据在许多决策和预测领域发挥了关键作用,如推荐系统、商业分析、医疗保[详细]
-
大数据在智慧城市建设中有什么应用
所属栏目:[大数据] 日期:2022-05-20 热度:193
智慧城市是以为民服务全程全时、城市治理高效有序、数据开放共融共享、经济发展绿色开源、网络空间安全清朗为主要目标,通过体系规划、信息主导、改革创新,推进新一代信息技术与城市现代化深度融合、迭代演进,实现国家与城市协调发展的新生态。 智慧能源[详细]
-
数据分析和数据科学的几大不一样之处
所属栏目:[大数据] 日期:2022-05-20 热度:70
在大数据的世界里,您可能会经常听到两个词语:数据科学(Data Science)和数据分析(Data Analytics)。它们虽然从字面上有些相似,但是在大数据的背景下它们强调的是不同的能力和技能方面。下面,我将从职业决策与规划的角度,和您讨论两者之间的差异。 一、知[详细]
-
大数据安全在云中的几个最优秀实践
所属栏目:[大数据] 日期:2022-04-12 热度:61
在处理云中的大量数据时,企业需要主动采取安全措施。不要等待威胁发生,应该首先采用一些安全方面的最佳实践。 任何大数据项目都涉及存储和处理大量数据,其中可能包括敏感信息或个人身份识别内容。解决云计算中的大数据安全问题需要采用各种最佳实践。 每[详细]
-
选择分析工具时要考虑的元素
所属栏目:[大数据] 日期:2022-04-12 热度:194
管理咨询机构Aspirant公司在调查报告中指出,随着人工智能(AI)的发展,各行业领域产生了大量数据,而这些数据对于企业都非常有帮助,但许多人不知道如何评估或分析如此大量的信息。 企业将引入或采用大量的分析解决方案,这些解决方案大多具有相似的特性和功[详细]
-
为何预测分析对零售企业如此重要
所属栏目:[大数据] 日期:2022-04-12 热度:179
预测分析是一种对企业越来越重要的策略。利用机器学习来分析企业收集的数据,现在可以用于对未来做出更准确的预测。虽然它在许多行业中的使用时间比许多人想象的还要长,但由于其复杂性和高昂的成本,该过程的采用率通常很低。然而,大数据和越来越多的可用[详细]
-
预测分析的几个胜利案例
所属栏目:[大数据] 日期:2022-04-12 热度:145
多年来,企业一直在努力发展其分析能力,这不仅是为了了解过去的表现,而且是为了预测趋势和未来事件,以提高敏捷性。越来越多的公司正在部署预测分析工具,以提高自身的服务效率、开发产品、发现潜在威胁、优化维护工作,甚至挽救生命。 预测分析工具会将统[详细]
-
大数据解析如何影响供应链?
所属栏目:[大数据] 日期:2022-04-12 热度:121
多年前,很多供应链的范围都在国内或本地,通常是比较简单的过程。全球化进程与技术进步相结合,为供应链增加了新的活力,但也使其变得更加复杂。最终,大数据作为一种用户友好的重要资产,并改变了供应链。但大数据给行业带来的最有价值的东西是什么?其答案[详细]
-
数据科学项目失败的原由
所属栏目:[大数据] 日期:2022-04-12 热度:196
如今,数据科学几乎都会引起IT和业务主管们的兴趣。但数据科学确实会出问题。 事实上,利用科学方法、流程、算法和技术系统从结构化和非结构化数据中获取各种见解的数据科学项目可能会以多种方式失败,从而导致时间、金钱和其他资源的浪费。存在缺陷的项目可[详细]
-
从人工智能到团队协作 数据科学家的7项关键技能
所属栏目:[大数据] 日期:2022-04-12 热度:91
如今的数据科学家具有的技能不仅需要精通人工智能和Python,还需要擅长与企业高管进行沟通。 美国劳工统计局将数据科学家列为未来增长最快的15个职业之一,预计在未来10年的工作岗位增长率将达到31%。随着数据日益成为所有企业的命脉,数据科学家不仅需要具[详细]
-
将让业务繁荣发展的十大数据分析趋向
所属栏目:[大数据] 日期:2022-04-12 热度:191
企业需要发现数据分析技术的一些发展趋势,以轻松预测客户需求、个性化内容并实现业务目标。 行业专家Geoffrey Moore在一本著作中指出,如果没有大数据分析,企业的发展可能会很盲目,就像在高速公路上游荡的鹿一样。 根据调研机构Gartner公司的调查,企业开[详细]
-
Google BigQuery是大数据分析的将来吗?
所属栏目:[大数据] 日期:2022-04-12 热度:101
考虑到Google BigQuery提高效率以及轻松存储大量信息的能力,它可能是大数据分析的未来方向。 如果企业未能实施正确的业务管理工具,那么在经营业务方面可能会很棘手。如果企业与数以千计的客户打交道,那么获得最佳生产力、充足预算和提高客户满意度应该是[详细]
-
大数据为企业带来的益处
所属栏目:[大数据] 日期:2022-04-12 热度:168
大数据是推动企业可持续变革的重要技术之一,企业需要了解大数据将如何改善业务。 当企业高管听到大数据这个术语时,他们自然而然地想到的是数量惊人的可用数据。这些数据来自电子商务和全渠道营销领域,或来自物联网上的连接设备,或来自生成有关交易活动的[详细]