学习的10个现实应用
发布时间:2021-05-22 21:25:38 所属栏目:大数据 来源:互联网
导读:强化学习在工业自动化中的应用 在工业自动化中,基于强化学习的机器人被用于执行各种任务。这些机器人不仅效率比人类更高,还可以执行危险任务。 Deepmind使用AI智能体来冷却Google数据中心是一个成功的应用案例。通过这种方式,节省了40%的能源支出。现在,
强化学习在工业自动化中的应用
在工业自动化中,基于强化学习的机器人被用于执行各种任务。这些机器人不仅效率比人类更高,还可以执行危险任务。
Deepmind使用AI智能体来冷却Google数据中心是一个成功的应用案例。通过这种方式,节省了40%的能源支出。现在,这些数据中心完全由人工智能系统控制,除了很少数据中心的专家,几乎不再需要其他人工干预。该系统的工作方式如下:
每五分钟从数据中心获取数据快照,并将其输入深度神经网络
预测不同组合将如何影响未来的能源消耗
在符合安全标准的情况下,采取具有最小功耗的措施
向数据中心发送相应措施并实施操作
当然,具体的措施还是由本地控制系统操作完成。
强化学习在金融贸易中的应用
有监督的时间序列模型可用来预测未来的销售额,还可以预测股票价格。然而,这些模型并不能决定在特定股价下应采取何种行动,强化学习(RL)正是为此问题而生。通过市场基准标准对RL模型进行评估,确保RL智能体正确做出持有、购买或是出售的决定,以保证最佳收益。
通过强化学习,金融贸易不再像从前那样由分析师做出每一个决策,真正实现机器的自动决策。例如,IBM构建有一个强大的、面向金融交易的强化学习平台,该平台根据每一笔金融交易的损失或利润来调整奖励函数。
强化学习在自然语言处理NLP中的应用
RL可用于文本摘要、问答和机器翻译等NLP任务。
Eunsol Choi、Daniel Hewlett和Jakob Uszkoret在论文中提出了一种基于RL的长文本问答方法。具体而言,首先从文档中选出几个与问题相关的句子,然后结合所选句子和问句通过RNN生成答案。
![]() (编辑:常州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |