加入收藏 | 设为首页 | 会员中心 | 我要投稿 常州站长网 (https://www.0519zz.cn/)- 云渲染、网络安全、数据安全、数据分析、人体识别!
当前位置: 首页 > 大数据 > 正文

快速高效的可扩展图神经网络SIGN

发布时间:2021-05-22 21:43:09 所属栏目:大数据 来源:互联网
导读:图神经网络(GNN)是一种新型的ML模型,专门用于处理图数据。在不同领域,GNN可成功实现领域内关系及相互作用建模,如社会科学,计算机图形与视觉,粒子物理学,化学和医学。但是令人失望的是,对GNN模型的研究和应用都是在规模较小的图上进行的(比如被广泛

图神经网络(GNN)是一种新型的ML模型,专门用于处理图数据。在不同领域,GNN可成功实现领域内关系及相互作用建模,如社会科学,计算机图形与视觉,粒子物理学,化学和医学。但是令人失望的是,对GNN模型的研究和应用都是在规模较小的图上进行的(比如被广泛使用的引用网络数据集-Cora,该数据集仅仅包含约5K节点[1]),大规模图数据的研究却很少受到关注。与之矛盾的是,在实际工业场景中,需要处理的确实超大规模的图,例如包含数亿节点和数十亿边的Twitter或Facebook社交网络,先前的研究工作很难用于这些图的处理分析。

简单来说,图神经网络的核心就是邻域聚合,即整合邻居节点的特征。将特征维数为d的n个节点表示为 n×d 的矩阵X,经典的GCN模型[2]就是通过整合邻居节点的特征实现某一节点的表示,这就是图神经网络中的卷积操作:

Y = ReLU(AXW)

其中,W是所有节点共享的可学习参数矩阵,A是线性扩散算子,等于邻域中特征的加权平均值[3]。与传统CNN类似,可以将这种模式依序排列实现多层网络。图神经网络可用于节点预测(如检测社交网络中的恶意用户),边预测(如推荐系统中的链接预测),整个图的预测(如预测分子图的化学性质)。另外,通过以下形式构架一个两层的GCN,可实现节点分类任务:

Y = softmax(A ReLU(AXW)W’)

那么,将图神经网络扩展到大规模图难在哪里呢?在上述节点预测问题中,节点作为GNN的训练样本。传统的机器学习通常假设样本是服从某一分布的、相互独立的。这样,可以根据单个样本分解损失函数,并采用随机优化技术批次处理训练数据(mini-batches)。现今几乎每个深度神经网络都是用mini-batches批次训练。

然而在图中,节点通过边相互连接,这使得训练集中的样本并不完全独立。此外,由于节点间的依赖性,采样可能会引入偏差(例如,可能会使某些节点或边被采样的概率更大),需要对此“副作用”进行处理。还有很重要的一点,采样过程中必须保证采样子图的有效结构,确保GNN可以处理。

但之前的许多研究工作忽略了这些问题,如GCN、ChebNet[2]、MoNet[4]和GAT[5]等直接使用全批次数据进行梯度下降,这就导致必须将图的整个邻接矩阵和节点特征保存在内存中。即使中等大小的图,L层GCN模型的时间复杂度为?(Lnd²)和空间复杂度为?(Lnd +Ld²)[7],更不必说大规模图了。

(编辑:常州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读